Abstract

This paper details a novel asynchronous pipelining methodology that maximizes the throughput buffering capacity and robustness of gate-level pipelined systems. The data paths in the proposed pipeline style are encoded using hybrid logic encoding scheme, which incorporates simplicity of the single-rail encoding and robustness of the dual-rail encoding. The control path that provides the synchronization between pipeline stages is constructed based on the simple and high-speed early acknowledgment protocol. Further, the proposed pipeline accommodates isolate phase to achieve 100% storage capacity. Two test cases: A 4-bit,10-stage FIFO and a 16-bit adder, have been designed in 90 nm technology to validate the proposed pipeline style. The FIFO has been laid out in the UMC 180 nm process using the cadence tool suite. The post-layout results of FIFO show 12.5% better throughput than the high capacity single-rail pipeline. Simulation results of the adder also reveal that the proposed structure achieves the throughput of 3.44 Giga-items/sec, which is 44.18% higher than the APCDP (Asynchronous pipeline based on constructed critical path) and 11.9% higher than the high capacity single-rail pipelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.