Abstract

Crashworthiness simulation system is one of the key computer-aided engineering (CAE) tools for the automobile industry and implies two potential conflicting requirements: accuracy and efficiency. A parallel crashworthiness simulation system based on graphics processing unit (GPU) architecture and the explicit finite element (FE) method is developed in this work. Implementation details with compute unified device architecture (CUDA) are considered. The entire parallel simulation system involves a parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty contact force calculation algorithm. Three basic GPU-based parallel strategies are suggested to meet the natural parallelism of the explicit FE algorithm. Two free GPU-based numerical calculation libraries, cuBLAS and Thrust, are introduced to decrease the difficulty of programming. Furthermore, a mixed array and a thread map to element strategy are proposed to improve the performance of the test pairs searching. The outer loop of the nested loop through the mixed array is unrolled to realize parallel searching. An efficient storage strategy based on data sorting is presented to realize data transfer between different hierarchies with coalesced access during the contact pairs searching. A thread map to element pattern is implemented to calculate the penetrations and the penetration forces; a double float atomic operation is used to scatter contact forces. The simulation results of the three different models based on the Intel Core i7-930 and the NVIDIA GeForce GTX 580 demonstrate the precision and efficiency of this developed parallel crashworthiness simulation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.