Abstract

A split shared-bus architecture with multiple simultaneous bus accesses is proposed. Compared to traditional bus architectures, the performance of proposed architecture is higher because of the ability to deliver multiple bus transactions in one bus cycle. We also propose an implementation of the arbiter, which not only detects and grants multiple compatible bus transactions, but also controls splitters properly to establish the communication paths for those transactions. Experimental results show that the bus architecture can have up to 2.3 times improvement in the effective bandwidth and up to 5 times reduction in the communication latency. Moreover, the arbiter implementation has reasonable area and timing cost, making it suitable for high performance SoC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.