Abstract

Solid-state drives (SSDs) have been widely used as caching tier for disk-based RAID systems to speed up data-intensive applications. However, traditional cache schemes fail to effectively boost the parity-based RAID storage systems (e.g., RAID-5/6), which have poor random write performance due to the small-write problem. What’s worse, intensive cache writes can wear out the SSD quickly, which causes performance degradation and cost increment. In this article, we present the design and implementation of KDD, an efficient SSD-based caching system which Keeps Data and Deltas in SSD. When write requests hit in the cache, KDD dispatches the data to the RAID storage without updating the parity blocks to mitigate the small write penalty, and compactly stores the compressed deltas in SSD to reduce the cache write traffic while guaranteeing reliability in case of disk failures. In addition, KDD organizes the metadata partition on SSD as a circular log to make the cache persistent with low overhead. We evaluate the performance of KDD via both simulations and prototype implementations. Experimental results show that KDD effectively reduces the small write penalty while extending the lifetime of the SSD-based cache by up to 6.85 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.