Abstract
We observe that daily highs and lows of stock prices do not diverge over time and, hence, adopt the cointegration concept and the related vector error correction model (VECM) to model the daily high, the daily low, and the associated daily range data. The in-sample results attest the importance of incorporating high-low interactions in modeling the range variable. In evaluating the out-of-sample forecast performance using both mean-squared forecast error and direction of change criteria, it is found that the VECM-based low and high forecasts offer some advantages over some alternative forecasts. The VECM-based range forecasts, on the other hand, do not always dominate - the forecast rankings depend on the choice of evaluation criterion and the variables being forecasted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.