Abstract
Background and ObjectivesCoronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) requires a maximal hyperemic state to be modeled by assuming the total coronary resistance decreased to a constant 0.24 of that under the resting state. However, this assumption neglects the vasodilator capacity of individual patients. Herein, we proposed a high-fidelity geometric multiscale model (HFMM) to characterize coronary pressure and flow under the resting state, seeking to better predict myocardial ischemia by using CCTA-derived instantaneous wave-free ratio (CT-iFR). MethodsFifty-seven patients (62 lesions) who had undergone CCTA and were then referred to invasive FFR were prospectively enrolled. The coronary microcirculation resistance hemodynamic model (RHM) under the resting condition was established on a patient-specific basis. Coupled with a closed-loop geometric multiscale model (CGM) of their individual coronary circulations, the HFMM model was established to non-invasively derive the CT-iFR from CCTA images. ResultsWith the invasive FFR being the reference standard, accuracy of the obtained CT-iFR in identifying myocardial ischemia was greater than those of the CCTA and non-invasively derived CT-FFR (90.32% vs. 79.03% vs. 84.3%). The overall computational time of CT-iFR was 61 ± 6 min, faster than that of the CT-FFR (8 h). The sensitivity, specificity, positive predictive value, and negative predictive value of the CT-iFR in discriminating an invasive FFR > 0.8 were 78% (95% CI: 40–97%), 92% (95% CI: 82–98%), 64% (95% CI: 39–83%), and 96% (95% CI:88–99%), respectively. ConclusionsA high-fidelity geometric multiscale hemodynamic model was developed for rapid and accurate estimation of CT-iFR. Compared with CT-FFR, CT-iFR is of less computational cost and enables assessment of tandem lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.