Abstract

The separation of nicotine and tobacco-specific N-nitrosamines is a tough problem in tobacco industry. In this study, separation of nicotine from 4-(methylnitrosamino) -1-(3-pyridyl)-1-butanone (NNK) mixtures was investigated using electrodialysis by taking the principle of the protonation status difference between these two components. The results indicated that the solution pH has a dominant impact on the separation process. In a pH range of 5-7, nicotine molecules are existed as mono- and di-protonated ions and can be separated from the uncharged NNK molecules. The acidic electrolyte is conducive to the separation process from the point of flux and energy consumption; while the alkaline electrolyte has negative impact on the separation process. A current density of 10 mA/cm2 is an appropriate value for the separation process. The lowest energy consumption of the separation process is 0.58 kWh/kg nicotine with the process cost to be estimated at only $0.208 /kg nicotine. Naturally, electrodialysis is a high-efficiency, cost-effective, and environmentally friendly process to separate and purify nicotine from tobacco juice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call