Abstract

Secondary active glucose transport is mediated by at least four members of the solute-linked carrier 5 gene family (sodium/glucose transporter [SGLT] 1-4). Human genetic disorders of SGLTs including glucose-galactose malabsorption and familial renal glucosuria have increased attention on members of this family of transporters as putative drug targets. Using human SGLT1 (hSGLT1) as a paradigm, we developed a functional assay that should be adaptable to ultra-high-throughput operation and to other SGLTs. Human embryonic kidney (HEK) 293 cells stably expressing hSGLT1 (hSGLT1/HEK293 cells) display a Na(+)-dependent, phlorizin-sensitive alpha-methyl-D-[(14)C]glucopyranoside flux with expected kinetic parameters. In electrophysiological studies with hSGLT1/HEK293 cells, substrate-dependent changes in membrane potential were observed, consistent with the electrogenic operation of hSGLT1. With the use of voltage-sensitive dyes, a membrane potential, fluorescence resonance energy transfer-based functional assay on a voltage/ion probe reader platform has been established for SGLT1. This high-capacity functional assay displays similar characteristics in terms of substrate specificity and phlorizin sensitivity to those determined by more traditional approaches and should provide a means to identify novel and selective SGLT inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.