Abstract
ABSTRACTEffective utilization of structural information is important for high-resolution synthetic aperture radar (SAR) image change detection. For comprehensively utilizing the local and global structures in SAR images, a hierarchical spatial-temporal graph kernel (STGK) method is proposed in this paper for high-resolution SAR image change detection. First, the bi-temporal hierarchical graph models are constructed for extracting the local-global structures in the bi-temporal SAR images. Then, a STGK function, which measures the spatial and temporal similarities between the local-global structures, is constructed for indicating the change levels between the bi-temporal images. Finally, a support vector machine (SVM) is implemented with the STGK function for producing the final change detection results. Experimental results on real GaoFen-3 SAR data sets demonstrate the effectiveness of the proposed method, and prove that the STGK method is capable of detecting changed areas with relatively complex structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.