Abstract
An important quality of meta-analytic models for research synthesis is their ability to account for both within- and between-study variability. Currently available meta-analytic approaches for studies of diagnostic test accuracy work primarily within a fixed-effects framework. In this paper we describe a hierarchical regression model for meta-analysis of studies reporting estimates of test sensitivity and specificity. The model allows more between- and within-study variability than fixed-effect approaches, by allowing both test stringency and test accuracy to vary across studies. It is also possible to examine the effects of study specific covariates. Estimates are computed using Markov Chain Monte Carlo simulation with publicly available software (BUGS). This estimation method allows flexibility in the choice of summary statistics. We demonstrate the advantages of this modelling approach using a recently published meta-analysis comparing three tests used to detect nodal metastasis of cervical cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.