Abstract
To reduce roadway congestion and improve traffic safety, accurate traffic metrics, such as number of vehicles travelling through lane-ways, are required. Unfortunately most existing infrastructure, such as loop-detectors and many video detectors, do not feasibly provide accurate vehicle counts. Consequently, a novel method is proposed which models vehicle motion using hidden Markov models (HMM). The proposed method represents a specified small region of the roadway as 'empty', 'vehicle entering', 'vehicle inside', and 'vehicle exiting', and then applies a modified Viterbi algorithm to the HMM sequential estimation framework to initialize and track vehicles. Vehicle observations are obtained using an Adaboost trained Haar-like feature detector. When tested on 88 hours of video, from three distinct locations, the proposed method proved to be robust to changes in lighting conditions, moving shadows, and camera motion, and consistently out-performed Multiple Target Tracking (MTT) and Virtual Detection Line(VDL) implementations. The median vehicle count error of the proposed method is lower than MTT and VDL by 28%, and 70% respectively. As future work, this algorithm will be implemented to provide the traffic industry with improved automated vehicle counting, with the intent to eventually provide real-time counts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.