Abstract

Radiotherapy is one of the treatments used against cancer. Each treatment has to be planned considering the medical prescription for each specific patient and the information contained in the patient’s medical images. The medical prescription usually is composed by a set of dosimetry constraints, imposing maximum or minimum radiation doses that should be satisfied. Treatment planning is a trial-and-error time consuming process, where the planner has to tune several parameters (like weights and bounds) until an admissible plan is found. Radiotherapy treatment planning can be interpreted as a multiobjective optimization problem, because besides the set of dosimetry constraints there are also several conflicting objectives: maximizing the dose deposited in the volumes to treat and, at the same time, minimizing the dose delivered to healthy cells. In this paper we present a new multiobjective optimization procedure that will, in an automated way, calculate a set of potential non-dominated treatment plans. It is also possible to consider an interactive procedure whenever the planner wants to explore new regions in the non-dominated frontier. The optimization procedure is based on fuzzy inference systems. The new methodology is described and it is applied to a head-and-neck cancer case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.