Abstract

AbstractIn this work, biodiesel synthesis via fatty acids esterification with methanol is conducted by using a heterogeneous catalyst made from cation‐exchange resin. The kinetics of esterification is studied at the different levels of catalyst loading (3.65–53.6%, w/w), reaction temperature (333–353 K) and molar ratio of methanol to fatty acids (1:1 to 20:1). The reaction rate and fatty acids conversion increased with increases in catalyst loading, reaction temperature and molar ratio of feeding reactants. A pseudo‐homogeneous kinetic model coupling the effect of catalyst loading, reaction temperature and methanol/fatty acids molar ratio used for describing the process gave a correlation coefficient of 0.95 between experimental and predicted data. The proposed model was further used to predict the optimal operating condition for obtaining equilibrium conversion of 0.99. A reaction temperature of 372.15 K, molar ratio of feeding reactants of 14.9:1 and reaction time of 9.5 h was numerically calculated as the optimal operating condition. Under this optimal operating condition, an experimental verification was carried out and a satisfactory match was observed between experimental data and model prediction. © 2007 American Institute of Chemical Engineers AIChE J, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.