Abstract
An implementation of Hapke’s radiative transfer-based photometric model for light scattering in semi-transparent porous media is presented with special emphasis on the analysis of reflectance spectra of Mercury. The model allows intimate mixing of an arbitrary number of regolith components with varying modal abundances, modal chemistries and grain sizes, matured by microphase iron. Reflectance spectra of suites of silicates of varying grain sizes and chemistries are used to calculate the imaginary coefficient of the complex index of refraction as a function of chemistry, thus limiting the modeling effects of chemically atypical laboratory samples, and allowing controlled modeling of minerals with varying chemical compositions. The performance of the model in the visual to near-infrared wavelength range is evaluated for a range of chemically characterized silicate mixtures of terrestrial powders, meteorite powders, matured lunar return samples, and remotely sensed lunar spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.