Abstract

Worldwide, 400 million people suffer from hay fever and seasonal asthma. The major causative agents of these allergies are pollen specific proteins called the group-1 grass pollen allergens. Although details of their antigenicity have been studied for 40 years with an eye towards immunotherapy, their function in the plant has drawn scant attention. Zea m 1 constitutes a class of abundant grass pollen allergens coded for by several genes that loosen the walls of grass cells, including the maize stigma and style. We have examined the impact of a transposon insertion into one of these genes (EXPB1, the most abundant isoform of Zea m 1) on the production of Zea m 1 protein, pollen viability, and pollen tube growth, both in vitro and in vivo. We also examined the effect of the insertional mutation on the competitive ability of the pollen by experimentally varying the sizes of the pollen load deposited onto stigmas using pollen from heterozygous plants and then screening the progeny for the presence of the transposon using PCR. We found that the insertional mutation reduced the levels of Zea m 1 in maize pollen, but had no effect on pollen viability, in vitro pollen tube growth or the proportion of progeny sired when small pollen loads are deposited onto stigmas. However, when large pollen loads are deposited onto the stigmas, the transposon mutation is vastly underrepresented in the progeny, indicating that this major pollen allergen has a large effect on pollen tube growth rates in vivo, and plays an important role in determining the outcome of the pollen-pollen competition for access to the ovules. We propose that the extraordinary abundance (4% of the extractable protein in maize pollen) of this major pollen allergen is the result of selection for a trait that functions primarily in providing differential access to ovules.

Highlights

  • Each silk of a maize plant can support the germination and growth of numerous pollen tubes, but only one tube enters the micropyle, penetrates the ovule and achieves fertilization

  • Analysis of pollen protein extracts by two-dimensional gel electrophoresis and immunoblotting from EXPB1/EXPB1 and expb1/ expb1 plants revealed that overall Zea m 1 production was reduced by 31% in expb1 pollen compared with the overall production of Zea m 1 in EXPB1 pollen (Figure 1c,d)

  • Effects of the Mu Insertion on Pollen Viability and Thiazolyl blue staining of pollen revealed that the reduction in the overall pool of Zea m 1 in expb1 pollen does not seem to affect the viability of the pollen produced by expb1/expb1 plants

Read more

Summary

Introduction

Each silk (stigma/style) of a maize plant can support the germination and growth of numerous pollen tubes, but only one tube enters the micropyle, penetrates the ovule and achieves fertilization. Even the longest silks that are connected to the lowermost ovaries on an ear are traversed in 24–30 h. To make this trek (up to 40 cm in maize), the male gametophyte must transcribe and translate a large number of genes. An estimated 24,000 genes are expressed by the microgametophyte, of which 10% are pollen-specific [2]. Recent studies of transcript profiling in pollen indicate even higher percentages of pollen-specific gene expression [3], the vast majority of genes expressed by microgametophytes still appear to be expressed during both the sporophytic and gametophytic stages of the life cycle. Because genes that give a competitive advantage in the race from the stigma to the ovule are expected to increase in the population, it is reasonable to predict that at least some of the pollen-specific genes have evolved in response to pollen-pollen competition for access to the ovules

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.