Abstract
Learning from demonstration (LfD) is a practical method for transferring skill knowledge from a human demonstrator to a robot. Several studies have shown the effectiveness of LfD in robotic grasping tasks to improve the success rate of grasping and to accelerate the development of new robotic grasping tasks. A well-designed demonstration device can effectively represent human grasping motion to transfer grasping skills to robots. In this paper, an improved gripper-like exoskeleton with a data collection system is proposed. First, we present the mechatronic details of the exoskeleton and its motion-tracking system, considering the manipulation flexibility and data acquisition requirements. We then present the capabilities of the device and its data collection system, which collects the position, pose and displacement of the gripper on the exoskeleton. The collected data is further processed by the data acquisition and processing software. Next, we describe the principles of Gaussian mixture model (GMM) and Gaussian mixture regression (GMR) in robot skill learning, which are used to transfer the raw data from demonstrations to robot motions. In the experiment, an optimized trajectory was learned from multiple demonstrations and reproduced on a robot. The results show that the GMR complemented with GMM is able to learn a smooth trajectory from demonstration trajectories with noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.