Abstract

The typical workflow for NMR structure determination involves collecting thousands of conformational restraints, calculating a bundle of 20-40 conformers in agreement with them and refining the energetics of these conformers. The structure calculation step employs simulated annealing based on molecular dynamics (MD) simulations with very simplified force fields. The value of refining the calculated conformers using restrained MD (rMD) simulations with state-of-art force fields is documented. This refinement however presents various subtleties, from the proper formatting of conformational restraints to the definition of suitable protocols. We describe a web interface to set up and run calculations with the AMBER package, which we called AMPS-NMR (AMBER-based Portal Server for NMR structures). The interface allows the refinement of NMR structures through rMD. Some predefined protocols are provided for this purpose, which can be personalized; it is also possible to create an entirely new protocol. AMPS-NMR can handle various restraint types. Standard rMD refinement in explicit water of the structures of three different proteins are shown as examples. AMPS-NMR additionally includes a workspace for the user to store different calculations. As an ancillary service, a web interface to AnteChamber is available, enabling the calculation of force field parameters for organic molecules such as ligands in protein-ligand adducts. AMPS-NMR is embedded within the NMR services of the WeNMR project and is available at http://py-enmr.cerm.unifi.it/access/index/amps-nmr; its use requires registration with a digital certificate. ivanobertini@cerm.unifi.it Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.