Abstract

BackgroundHere, it has been discussed about creating a specific and sustainable analytical technique for monitoring anti-diabetic drugs in order to accurately determine the dosage in patients and reduce side effects, remove them from wastewater (as emerging contaminants), and ultimately abate pharmaceutical pollutants in the environment. ResultsIn this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-μSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers’ mat was synthesized simply via cheap equipment. Cur was added to enhance the hydrophobicity and functionality of the sorbent. The immobilization process was performed by soaking the mat in the liquid mixture for a specific duration. The correct synthesis and experimental molar ratio of the HNADES components were confirmed by ATR-FTIR and NMR (1H and 13C) spectroscopy. The prepared green sorbent (Cur-HNADES/PVA) was characterized using ATR-FTIR, FE-SEM, EDX/EDX mapping analysis, and water contact angle (WCA) measurement, and it exhibited satisfactory adsorption capacity for the target analytes. SignificanceUnder optimal conditions (pH = 6.0, adsorption cycle = 3, sample volume = 5.0 mL, desorption cycle = 1, type and volume of elution = 80:20 %v/v MeOH/ACN and 500.0 μL), the method was validated in terms of specificity, linear dynamic ranges (LDRs = 0.1–2000.0 μg L−1 and 0.1–1800.0 μg L−1), limits of detection (LODs = 0.03–0.09 μg L−1), and precision (within-day RSDs% = 0.32–1.45% and between-day RSDs% = 0.59–2.03%). Evaluation of the greenness aspects of the proposed method was accomplished using the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) approaches. It is noteworthy that the conducted research represents the first report of the synthesis and application of this novel and green sorbent for the determination of anti-diabetic drugs in the mentioned real samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.