Abstract

A miniaturized extraction/preconcentration method based on an aqueous biphasic system (μ-ABS) was developed with reagents commonly used as food additives: cholinium chloride (ChCl) as main extraction phase, K2HPO4 as salting-out agent, and water as the main component (being the sample for analyses). With the aim of obtaining high enrichment factors, miniaturization, and adequate analytical performance, a point in the biphasic region with the lowest amount of ChCl was selected, corresponding to 1.55% (w/w) of ChCl, 59.5% (w/w) of K2HPO4, and 38.95% (w/w) of water. The green μ-ABS (attending to its main elements and performance mode) was used in combination with high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the determination of 9 personal care products in wastewater samples. The μ-ABS-HPLC-DAD method showed high enrichment factors (up to 100), and quantitative extraction efficiencies for those compounds containing OH groups in their structure, which can undergo hydrogen bonding with ChCl. Thus, limits of quantification down to 0.8 µg·L-1 and extraction efficiencies between 66.4 and 108% (concentration levels of 1.3 and 13 µg·L-1) were reached for the group of parabens and the UV-filter benzophenone-3. The method is characterized by the use of non-harmful reagents and the absence of organic solvents in the entire sample preparation procedure, while being simple, low-cost, easily compatible with HPLC, and highly efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.