Abstract

The geometry image representation is a remeshing of an irregular triangle surface mesh onto a rectangular grid of points and facilitates the processing of surface geometry. Its connectivity is commonly generated by splitting each rectangular quad of grid points along the shorter diagonal. However, this simple approach typically yields skinny triangles on the surface when the underlying local surface metric tensor eigenvalues differ significantly. Sequences of such triangles can appear like jaggedness.This paper presents a greedy, region growing algorithm for anisotropic triangulation of geometry images obtained by geometric stretch parametrization. The algorithm compensates for the local stretch anisotropy and variations in the principal directions of the metric tensor by minimizing the total length of the new edges of triangles added to the grown region. The surface reconstructed is more faithful to the original surface than the ones reconstructed by quad-splitting connectivity and recognized triangulation approaches for point clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.