Abstract
This paper develops a greedy heuristic for the capacitated minimum spanning tree problem (CMSTP), based on the two widely known methods of Prim and of Esau–Williams. The proposed algorithm intertwines two-stages: an enhanced combination of the Prim and Esau–Williams approaches via augmented and synthetic node selection criteria, and an increase of the feasible solution space by perturbing the input data using the law of cosines. Computational tests on benchmark problems show that the new heuristic provides extremely good performance results for the CMSTP, justifying its effectiveness and robustness. Furthermore, excluding the feasible space expansion, we show that we can still obtain good quality solutions in very short computational times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.