Abstract

We present an O(min( Kn, n 2)) algorithm to solve the maximum integral multiflow and minimum multicut problems in rooted trees, where K is the number of commodities and n is the number of vertices. These problems are NP-hard in undirected trees but polynomial in directed trees. In the algorithm we propose, we first use a greedy procedure to build the multiflow then we use duality properties to obtain the multicut and prove the optimality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.