Abstract

The configuration of the supply chain network has a strong influence on the overall performance of the supply chain. A well designed supply chain network provides a proper platform for efficient and effective supply chain management. The supply chain network should be designed in the way that could meet the customer needs with an efficient cost. This paper studies the responsive, multi-stage supply chain network design (SCND) problem under two conditions: (1) when direct shipment is allowed and (2) when direct shipment is prohibited. First, two mixed integer programming models are proposed for multi-stage, responsive SCND problem under two abovementioned conditions. Then, to escape from the complexity of mixed integer mathematical programming models, graph theoretic approach is used to study the structure of the SCND problems and it is proven that both of SCND problems considered in this paper could be modeled by a bipartite graph. Finally, since such network design problems belong to the class of NP-hard problems, a novel heuristic solution method is developed based on a new solution representation method derived from graph theoretic view to the structure of the studied problem. To assess the performance of the proposed heuristic solution method, the associated results are compared to the exact solutions obtained by a commercial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.