Abstract

Geodemographic classifications are exceptional tools for geographic analysis, business and policy-making, providing an overview of the socio-demographic structure of a region by creating an unsupervised, bottom-up classification of its areas based on a large set of variables. Classic approaches can require time-consuming preprocessing of input variables and are frequently a-spatial processes. In this study, we present a groundbreaking, systematic investigation of the use of graph neural networks for spatial geodemographic classification. Using Greater London as a case study, we compare a range of graph autoencoder designs with the official London Output Area Classification and baseline classifications developed using spatial fuzzy c-means. The results show that our framework based on a Node Attributes-focused Graph AutoEncoder (NAGAE) can perform similarly to classic approaches on class homogeneity metrics while providing higher spatial clustering. We conclude by discussing the current limitations of the proposed framework and its potential to develop into a new paradigm for creating a range of geodemographic classifications, from simple, local ones to complex classifications able to incorporate a range of spatial relationships into the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.