Abstract

Graph data mining algorithms are increasingly applied to biological graph dataset. However, while existing graph mining algorithms can identify frequently occurring sub-graphs, these do not necessarily represent useful patterns. In this paper, we propose a novel graph mining algorithm, MIGDAC (Mining Graph DAta for Classification), that applies graph theory and an interestingness measure to discover interesting sub-graphs which can be both characterized and easily distinguished from other classes. Applying MIGDAC to the discovery of specific patterns of chemical compounds, we first represent each chemical compound as a graph and transform it into a set of hierarchical graphs. This not only represents more information that traditional formats, it also simplifies the complex graph structures. We then apply MIGDAC to extract a set of class-specific patterns defined in terms of an interestingness threshold and measure with residue analysis. The next step is to use weight of evidence to estimate whether the identified class-specific pattern will positively or negatively characterize a class of drug. Experiments on a drug dataset from the KEGG ligand database show that MIGDAC using hierarchical graph representation greatly improves the accuracy of the traditional frequent graph mining algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.