Abstract

Feature selection is a task of fundamental importance for many data mining or machine learning applications, including regression. Surprisingly, most of the existing feature selection algorithms assume the problems to address are either supervised or unsupervised, while supervised and unsupervised samples are often simultaneously available in real-world applications. Semi-supervised feature selection methods are thus necessary, and many solutions have been proposed recently. However, almost all of them exclusively tackle classification problems. This paper introduces a semi-supervised feature selection algorithm which is specifically designed for regression problems. It relies on the notion of Laplacian score, a quantity recently introduced in the unsupervised framework. Experimental results demonstrate the efficiency of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.