Abstract

This paper develops a gradient descent (GD) method for solving a system of nonlinear equations with an explicit formulation. We theoretically prove that the GD method has linear convergence in general and, under certain conditions, is equivalent to Newton’s method locally with quadratic convergence. A stochastic version of the gradient descent is also proposed for solving large-scale systems of nonlinear equations. Finally, several benchmark numerical examples are used to demonstrate the feasibility and efficiency compared to Newton’s method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.