Abstract

We investigate new programming techniques for parallel tempering Monte Carlo simulations of an elementary bead-spring homopolymer model using graphics processing units (GPUs). For a precise estimation of statistical quantities, like the peak structure of the specific heat, a large number of conformations with substantial statistical data is needed. Therefore the advantage of gathering this data faster by improving the performance of Monte Carlo simulations cannot be overrated. With the huge computational capability of the large number of cores on GPUs, that can be exploited by means of multithreaded programming, we find significant increases in e_ciency compared to CPU-only simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.