Abstract
Abstract This paper proposes a novel filter for sensor-based bearing-only simultaneous localization and mapping in three dimensions with globally exponentially stable (GES) error dynamics. A nonlinear system is designed, its output transformed, and its dynamics augmented so that the proposed formulation can be considered as linear time-varying for the purpose of observability analysis. This allows the establishment of observability results related to the original nonlinear system that naturally lead to the design of a Kalman filter with GES error dynamics. The performance of the proposed algorithm is assessed resorting to real experiments based on the Rawseeds dataset as well as further realistic simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.