Abstract

This paper deals with a global optimization scheme for structural systems that require finite element analysis to evaluate the constraints or the objective function. The paper proposes a strategy for finding the global optimum using an interval method in conjunction with a multipoint function approximation. The highly nonlinear and nonconvex objective and constraint functions are first represented in the design space using linear and adaptive local approximations and these approximations are blended globally with the use of proper weighting functions. The interval method is then employed to trace the global optimum in the approximated function space. The procedure is tested with several examples with known global solutions and it is successfully applied to optimize the fiber-orientation angles of laminated composite plates for minimum deflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.