Abstract

A novel global sliding-mode control (GSMC) scheme with adjustable robustness is presented in this article. The proposed scheme offers a switching function together with unperturbed system dynamics to weigh the contribution from SMC such that all of the closed-loop poles can be located within predefined regions to provide design flexibility, and the robustness of system can thus be adjusted. By this scheme, the maximal control effort and chattering level can be reduced according to designer's specifications directly. Since the switching function can initially be made to equal to zero, the adjustable performance during the entire response can be guaranteed, and the reaching condition is thus lifted. The efficacy of this scheme is demonstrated via successful implementation on a linear variable reluctance motor (LVRM) servo system. Both simulation and experimental studies further demonstrate its feasibility and effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.