Abstract

This paper presents a global plane fitting approach for roof segmentation from lidar point clouds. Starting with a conventional plane fitting approach (e.g., plane fitting based on region growing), an initial segmentation is first derived from roof lidar points. Such initial segmentation is then optimized by minimizing a global energy function consisting of the distances of lidar points to initial planes (labels), spatial smoothness between data points, and the number of planes. As a global solution, the proposed approach can determine multiple roof planes simultaneously. Two lidar data sets of Indianapolis (USA) and Vaihingen (Germany) are used in the study. Experimental results show that the completeness and correctness are increased from 80.1% to 92.3%, and 93.0% to 100%, respectively; and the detection cross-lap rate and reference cross-lap rate are reduced from 11.9% to 2.2%, and 24.6% to 5.8%, respectively. As a result, the incorrect segmentation that often occurs at plane transitions is satisfactorily resolved; and the topological consistency among segmented planes is correctly retained even for complex roof structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.