Abstract

Abstract Global nonhydrostatic atmospheric models are becoming increasingly important for studying the climates of planets and exoplanets. However, such models suffer from computational difficulties due to the large aspect ratio between the horizontal and vertical directions. To overcome this problem, we developed a global model using a vertically implicit correction (VIC) scheme in which the integration time step is no longer limited by the vertical propagation of acoustic waves. We proved that our model, based on the Athena++ framework and its extension for planetary atmospheres—SNAP (Simulating Nonhydrostatic Atmospheres on Planets), rigorously conserves mass and energy in finite-volume simulations. We found that traditional numerical stabilizers such as hyperviscosity and divergence damping are not needed when using the VIC scheme, which greatly simplifies the numerical implementation and improves stability. We present simulation results ranging from 1D linear waves to 3D global circulations with and without the VIC scheme. These tests demonstrate that our formulation correctly tracks local turbulent motions, produces Kelvin–Helmholtz instability, and generates a super-rotating jet on hot Jupiters. Employing this VIC scheme improves the computational efficiency of global simulations by more than two orders of magnitude compared to an explicit model and facilitates the capability of simulating a wide range of planetary atmospheres both regionally and globally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.