Abstract
The ability to derive a whole-genome map of transcription-factor binding sites (TFBS) is crucial for elucidating gene regulatory networks. Herein, we describe a robust approach that couples chromatin immunoprecipitation (ChIP) with the paired-end ditag (PET) sequencing strategy for unbiased and precise global localization of TFBS. We have applied this strategy to map p53 targets in the human genome. From a saturated sampling of over half a million PET sequences, we characterized 65,572 unique p53 ChIP DNA fragments and established overlapping PET clusters as a readout to define p53 binding loci with remarkable specificity. Based on this information, we refined the consensus p53 binding motif, identified at least 542 binding loci with high confidence, discovered 98 previously unidentified p53 target genes that were implicated in novel aspects of p53 functions, and showed their clinical relevance to p53-dependent tumorigenesis in primary cancer samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.