Abstract

An electroanalytical method for determining dienestrol (DNL) in bovine urine samples is described. A glassy carbon electrode (GCE) modified with silver nanoparticles and functionalized multi-walled carbon nanotubes was used as working sensor. The modified GCE displays substantial analytical improvements including an amplified signal, fast electron transfer kinetics, and resistance to fouling. The irreversible oxidation signal of DNL is pH-dependent. Best reactivity is found at pH3.0, where a typical anodic peak is recorded at 0.8V (vs. Ag/AgCl). Square-wave voltammetry revealed a 8.4nM detection limit (1.9μgL-1), good repeatability and reproducibility (RSDs <5.0%), and good accuracy (93.2-99.4% recovery from spiked samples). The modified electrode is highly stable even in the presence of ions (Na+ and K+), urea and uric acid. The electrochemical sensor fulfills all requisites to be used as forensic device in surveillance of illegal livestock practices. Graphical abstract Schematic presentation of the construction of a glassy carbon electrode modified with silver nanoparticles and functionalized multi-walled carbon nanotubes. This sensor exhibited a remarkable performance for voltammetric detection of the illicit growth promoter dienestrol in animal urine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.