Abstract

AbstractThe effective non‐precious metal catalysts toward the oxygen evolution reaction (OER) are highly desirable for electrochemical water splitting. Herein, we prepare a novel glass‐ceramic (Ni1.5Sn@triMPO4) by embedding crystalline Ni1.5Sn nanoparticles into amorphous trimetallic phosphate (triMPO4) matrix. This unique crystalline‐amorphous nanostructure synergistically accelerates the surface reconstruction to active Ni(Fe)OOH, due to the low vacancy formation energy of Sn in glass‐ceramic and high adsorption energy of PO43− at the VO sites. Compared to the control samples, this dual‐phase glass‐ceramic exhibits a remarkably lowered overpotential and boosted OER kinetics after surface reconstruction, rivaling most of state‐of‐the‐art electrocatalysts. The residual PO43− and intrinsic VO sites induce redistribution of electron states, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and promoting the OER activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.