Abstract
A simple Gibbs energy-driving force method for the design of non-reactive and reactive distillation columns has been developed. Based on the binary driving force concept and the equilibrium Gibbs energy computation, a systematic procedure for the design of non-reactive distillation columns (NRDC) and reactive distillation columns (RDC) is proposed. The design method exploits the connection between the driving force values and the equilibrium Gibbs energy to determine the number of stages, the optimal feed location, and the heat required at the top and bottom of the column and the minimum reflux ratio. The final design guarantees an optimal operation since maximum thermodynamic efficiency is achieved. The maximum thermodynamic efficiency criterion is equivalent to the minimum entropy condition required for a stable operation of the distillation columns. The method is applied for the design of two non-reactive systems: a) Benzene-Toluene ideal system and b) Ethanol-Water non-ideal system. A reactive distillation column considering the isomerization of n-butane in the presence of an inert compound is designed. The optimal thermal feed condition obtained through the maximum separation efficiency guarantees that the final designs obtained correspond to the minimum energy requirements for the design target of separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.