Abstract

A geometrically exact mechanical model for the overall dynamics of elastic isotropic rotating blades is proposed. The mechanical formulation is based on the special Cosserat theory of rods which includes all geometric terms in the kinematics and in the balance laws without any restriction on the geometry of deformation besides the enforcement of the local rigidity of the blade cross sections. All apparent forces acting on the blade moving in a rotating frame are accounted for in exact form. The role of internal kinematic constraints such as the unshearability of the slender blades is discussed. The Taylor expansion of the governing equations obtained via an Updated Lagrangian formulation is then employed to obtain the linearized perturbed form about the prestressed configuration under the centrifugal forces. By applying the Galerkin approach to the linearized equations of motion, the linear eigenvalue problem is solved to yield the frequencies and mode shapes. In particular, the natural frequencies of unshearable blades including coupling between flapping, lagging, axial and torsional components are investigated. The angular speeds at which internal resonances may arise due to specific ratios between the frequencies of different modes are determined thus shedding light onto the overall modal couplings in rotating beam structures depending on the angular speed regime. The companion paper (part 2) discusses the nonlinear modes of vibration away from internal resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.