Abstract

As glass-forming fluids become colder and denser, structural rearrangements become slow and eventually cease. For hard-sphere fluids, percolation of particles unable to change neighbors (T1-inactive particles) signals the glass transition. To investigate this geometrical criterion for mobility in soft-sphere systems, we simulate monodisperse fluids interacting with a generalized Weeks-Chandler-Andersen (WCA) potential in metastable equilibrium, using our previously developed crystal-avoiding method. We find that the vanishing diffusivity as the glass transition is approached can be described by a power law below the onset temperature of super-Arrhenius behavior. By mapping the soft spheres to hard spheres based on mean collision energy, we find that the diffusivity versus effective volume fraction curves collapse onto the hard-sphere curve for all systems studied. We find that the onset of super-Arrhenius behavior and the MCT dynamic glass transition correlate well with temperature when the T1-inactive particles form clusters of two particles on average and when the T1-inactive clusters percolate the entire system, respectively. Our findings provide new insight into the structural origin of glassy dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.