Abstract
The multiple-unicast network coding conjecture states that for multiple unicast sessions in an undirected network, network coding is equivalent to routing. Simple and intuitive as it appears, the conjecture has remained open since its proposal in 2004, and is now a well-known unsolved problem in the field of network coding. Based on a recently proposed tool of space information flow, we present a geometric framework for analyzing the multiple-unicast conjecture. The framework consists of four major steps, in which the conjecture is transformed from its throughput version to cost version, from the graph domain to the space domain, and then from high dimension to 1-D, where it is to be eventually proved. We apply the geometric framework to derive unified proofs to known results of the conjecture, as well as new results previously unknown. A possible proof to the conjecture based on this framework is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.