Abstract
A recent approach to choosing the amount of smoothing in nonparametric regression is to select the simplest estimate for which the residuals ‘look like white noise’. This can be checked with the so-called multiresolution criterion, which Davies and Kovac [P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolutions (with discussion and rejoinder), Ann. Stat. 29 (2001), pp. 1–65.] introduced in connection with their taut-string procedure. It has also been used in several other nonparametric procedures such as spline smoothing or piecewise constant regression. We show that this criterion is related to a norm, the multiresolution norm (MR-norm). We point out some important differences between this norm and p-norms. The MR-norm is not invariant w.r.t. sign changes and permutations, and this makes it useful for detecting runs of residuals of the same sign. We also give sharp upper and lower bounds for the MR-norm in terms of p-norms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.