Abstract

This paper is concerned with the least squares inverse eigenvalue problem of reconstructing a linear parameterized real symmetric matrix from the prescribed partial eigenvalues in the sense of least squares, which was originally proposed by Chen and Chu (SIAM J Numer Anal 33:2417–2430, 1996). We provide a geometric Gauss–Newton method for solving the least squares inverse eigenvalue problem. The global and local convergence analysis of the proposed method is established under some assumptions. Also, a preconditioned conjugate gradient method with an efficient preconditioner is proposed for solving the geometric Gauss–Newton equation. Finally, some numerical tests, including an application in the inverse Sturm–Liouville problem, are reported to illustrate the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.