Abstract
The cutting-plane approach to integer programming was initiated more that 40 years ago: Gomory introduced the corner polyhedron as a relaxation of a mixed integer set in tableau form and Balas introduced intersection cuts for the corner polyhedron. This line of research was left dormant for several decades until relatively recently, when a paper of Andersen, Louveaux, Weismantel and Wolsey generated renewed interest in the corner polyhedron and intersection cuts. Recent developments rely on tools drawn from convex analysis, geometry and number theory, and constitute an elegant bridge between these areas and integer programming. We survey these results and highlight recent breakthroughs in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.