Abstract

Forward genetic screens in genetically accessible invertebrate organisms such as Drosophila melanogaster have shed light on transcription factors that specify formation of neurons in the vertebrate CNS. However, invertebrate models have, to date, been uninformative with respect to genes that specify formation of the vertebrate glial lineages. All recent insights into specification of vertebrate glia have come via monitoring the spatial and temporal expression patterns of individual transcription factors during development. In studies described here, we have taken this approach to the genome scale with an in silico screen of the Mahoney pictorial atlas of transcription factor expression in the developing CNS. From the population of 1445 known or probable transcription factors encoded in the mouse genome, we identify 12 novel transcription factors that are expressed in glial lineage progenitor cells. Entry-level screens for biological function establish one of these transcription factors, Klf15, as sufficient for genesis of precocious GFAP-positive astrocytes in spinal cord explants. Another transcription factor, Tcf4, plays an important role in maturation of oligodendrocyte progenitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.