Abstract

Wireless rechargeable sensor networks (WRSNs) have gained much attention in recent years due to the rapid progress that has occurred in wireless charging technology. The charging is usually done by one or multiple mobile vehicle(s) equipped with wireless chargers moving toward sensors demanding energy replenishing. Since the loading of each sensor in a WRSN can be different, their time to energy exhaustion may also be varied. Under some circumstances, sensors may deplete their energy quickly and need to be charged urgently. Appropriate scheduling of available mobile charger(s) so that all sensors in need of recharge can be served in time is thus essential to ensure sustainable operation of the entire network, which unfortunately has been proven to be an NP-hard problem (Non-deterministic Polynomial-time hard). Two essential criteria that need to be considered concurrently in such a problem are time (the sensor’s deadline for recharge) and distance (from charger to the sensor demands recharge). Previous works use a static combination of these two parameters in determining charging order, which may fail to meet all the sensors’ charging requirements in a dynamically changing network. Genetic algorithms, which have long been considered a powerful tool for solving the scheduling problems, have also been proposed to address the charging route scheduling issue. However, previous genetic-based approaches considered only one charging vehicle scenario that may be more suitable for a smaller WRSN. With the availability of multiple mobile chargers, not only may more areas be covered, but also the network lifetime can be sustained for longer. However, efficiently allocating charging tasks to multiple charging vehicles would be an even more complex problem. In this work, a genetic approach, which includes novel designs in chromosome structure, selection, cross-over and mutation operations, supporting multiple charging vehicles is proposed. Two unique features are incorporated into the proposed algorithm to improve its scheduling effectiveness and performance, which include (1) inclusion of EDF (Earliest Deadline First) and NJF (Nearest Job First) scheduling outcomes into the initial chromosomes, and (2) clustering neighboring sensors demand recharge and then assigning sensors in a group to the same mobile charger. By including EDF and NJF scheduling outcomes into the first genetic population, we guarantee both time and distance factors are taken into account, and the weightings of the two would be decided dynamically through the genetic process to reflect various network traffic conditions. In addition, with the extra clustering step, the movement of each charger may be confined to a more local area, which effectively reduces the travelling distance, and thus the energy consumption, of the chargers in a multiple-charger environment. Extensive simulations and results show that the proposed algorithm indeed derives feasible charge scheduling for multiple chargers to keep the sensors/network in operation, and at the same time minimize the overall moving distance of the mobile chargers.

Highlights

  • In wireless sensor networks (WSN), hundreds or thousands of homogenous sensors with limited battery power are deployed in the region where information will be collected

  • The base station is located at the center of the area

  • Packets are sent from nodes to the base station hop by hop

Read more

Summary

Introduction

In wireless sensor networks (WSN), hundreds or thousands of homogenous sensors with limited battery power are deployed in the region where information will be collected. Sensor nodes detect their proximate environment for specific information and send that information to a base station. As a result of advances in wireless charging technology [1], it is possible to recharge the sensors through a vehicle equipped with a charger (will be referred to as mobile charger hereafter) [2,3,4]. Otherwise part of the sensors may deplete their energy before being charged, resulting in possible network failure. Regardless of the number of mobile chargers used in a WRSN, optimal charging scheduling and its related issues have been proven to be an NP-hard problem and so far only heuristic/near-optimal solutions can be provided

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.