Abstract

The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.