Abstract

We propose new optimization algorithms to minimize a sum of convex functions, which may be smooth or not and composed or not with linear operators. This generic formulation encompasses various forms of regularized inverse problems in imaging. The proposed algorithms proceed by splitting: the gradient or proximal operators of the functions are called individually, without inner loop or linear system to solve at each iteration. The algorithms are easy to implement and have proven convergence to an exact solution. The classical Douglas-Rachford and forward-backward splitting methods, as well as the recent and efficient algorithm of Chambolle-Pock, are recovered as particular cases. The application to inverse imaging problems regularized by the total variation is detailed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.