Abstract

As part of a platform for computer-assisted verification, we present an intermediate representation of programs that is both language independent and appropriate for the generation of verification conditions. We show how many imperative and functional languages can be translated to this generic intermediate representation, and how the generated conditions reflect the axiomatic semantics of the original program. At this representation level, loop invariants and preconditions of recursive functions belonging to the original program are represented by assertions placed at certain edges of a directed graph. The paper defines the generic representation, sketches the transformation algorithms, and describes how the places where the invariants should be placed are computed. Assuming that, either manually or assisted by the platform, the invariants have been settled, it is shown how the verification conditions are generated. A running example illustrates the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.