Abstract

The turnaround process constitutes an important part of the air transportation system. Airports often represent bottlenecks in air traffic management (ATM), thus operations related to the preparation of the aircraft for the next flight leg have to be executed smoothly and in a timely manner. The ATM significantly depends on a reliable turnaround process. Future paradigm changes with respect to airplane energy sources, aircraft design or propulsion concepts will also influence the airport layout. As a consequence, operational processes associated with the turnaround will be affected. Airlines aim for efficient and timely turnaround operations that are correlated with higher profits. This case study discusses an approach to investigate a new aircraft design with respect to the implications on the turnaround. The boarding process, as part of the turnaround, serves as an example to evaluate the consequences of new design concepts. This study is part of an interdisciplinary research to investigate future energy, propulsion and designs concepts and their implications on the whole ATM system. Due to these new concepts, several processes of the turnaround will be affected. For example, new energy storage concepts will influence the fueling process on the aircraft itself or might lead to a new infrastructure at the airport. This paper aims to evaluate the applied methodology in the case of a new boarding process, due to a new aircraft design, by means of a generic example. An agent-based boarding simulation is applied to assess passenger behavior during boarding, particularly with regard to cabin layout and seat configuration. The results of the generic boarding simulation are integrated into a simplified, deterministic and generic simulation of the turnaround process. This was done to assess the proposed framework for future investigations which on the one hand address the ATM system holistically and on the other, incorporate additional or adapted processes of the turnaround.

Highlights

  • Over the last several decades, not much has changed in the aircraft handling business

  • Within the framework of the proposed investigation, the main focus will be put on the boarding simulation of the blended wing body aircraft

  • The boarding simulation was integrated into a generic turnaround simulation, which primarily estimates the time required for the cargo loading, catering, cleaning, and refuelling sub-processes

Read more

Summary

Introduction

Over the last several decades, not much has changed in the aircraft handling business. The expectation of new energy sources and aircraft technologies possesses among other things different environmental demands on airport infrastructure and management. This paper studies the impact of a new aircraft design on the ground handling operations at airports. The paper is structured as follows: The first section provides a brief insight into the turnaround (TA) process, whereas an overview of the future aircraft concepts in the context of the resarch cluster “Energy System Transformation in Aviation” is given . Thereafter, an operational assessment of changes in turnaround processes is taken. The paper concludes with a summary of the obtained methods to investigate the aircraft turnaround and gives an outlook on future work

Future Aircraft Designs
Aircraft Turnaround
Operational Assessment of Changes in Turnaround Processes
Boarding Simulation
Reference Applications
Boarding Strategies
Turnaround Simulation
Findings
Conclusions and Outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.