Abstract

Usually, objects to be classified are represented by features. In this paper, we discuss an alternative object representation based on dissimilarity values. If such distances separate the classes well, the nearest neighbor method offers a good solution. However, dissimilarities used in practice are usually far from ideal and the performance of the nearest neighbor rule suffers from its sensitivity to noisy examples. We show that other, more global classification techniques are preferable to the nearest neighbor rule, in such cases.For classification purposes, two different ways of using generalized dissimilarity kernels are considered. In the first one, distances are isometrically embedded in a pseudo-Euclidean space and the classification task is performed there. In the second approach, classifiers are built directly on distance kernels. Both approaches are described theoretically and then compared using experiments with different dissimilarity measures and datasets including degraded data simulating the problem of missing values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.